Regulation of miRNA expression by low-level laser therapy and photodynamic therapy (to the 50th anniversary of the laser medicine)

  • V. N. Zalessky N.D. Strazhesko Institute of Cardiology NAMS, Kiev, Ukraine
  • I. Z. Samosuk P. L. Shupyk National Medical Academy of Post-Graduate Education, Kiev, Ukraine
Keywords: laser therapy, low-level laser therapy, photodynamic therapy, regulation of expression, miRNA.

Abstract

Applications of laser therapy, including low-level laser therapy (LLLT), and photodynamic therapy (PDT), have been proven to be beneficial and relatively less invasive therapeutic modalities for numerous diseases and disease conditions. Using specific types of laser irradiation, specific cellular activities can bee induced. Because multiple cellular signaling cascade are simultaneously activated in cell exposed to lasers, understanding the molecular responses within cells will aid in the development of laser therapies. In order to understand in detail the molecular mechanisms of LLLT and PDT-related responses, it will be useful to characterize the specific expression of miRNAs and proteins. Such analyses will provide an important source for new applications of laser therapy, as well as for the development of personalized therapy in rehabilitation. Although several miRNAs should be up- or down-regulated upon stimulation by LLLT and PDT, very few published studies address the effect of laser therapy on miRNA expression. In this review, we focus on LLLT and PDT, as representative laser therapies and discuss the effects of these therapies on miRNA expression.

Downloads

Download data is not yet available.

References

Залесский В. Н., Тимен А. Е., Прохоренко О. К. Применение лазерной биостимуляционной терапии в комплексном лечении трофических и лучевых язв нижних конечностей // Клин. хирургия. – 1990. – № 3. – С. 49–51.

Залесский В. Н., Бобров В. А. Лазерная корpекция нарушений ритма сердца // Кардиология. – 1990. – № 12. – С. 76–79.

Залесский В. Н., Михалкин И. А., Бобров В. А. и др. Оптимизация противоаритмического эффекта кордарона и новокаинамида лазерной биостимуляционной терапией в комплексной программе лечения рефрактерных тахиаритмий // Терапевт. арх. – 1995. – № 3. – С. 62–64.

Залесский В. Н., Гордиенко В. И. Фотосенсибилизированная порфиринами инактивация опухолевых клеток – основа лазерной фотодинамической терапии // Врачеб. дело. – 1997. – № 5. – С. 98–102.

Заліський В. М., Тимченко А. С., Фільченков О. О. Ультрафіолетове опромінення і апоптоз // Журн. АМН України. – 2002. – Т. 8, № 2. – С. 259–268.

Залесский В. Н., Возианов С. А., Дынник О. Б. Фотодинамическая терапия: к 100–летию открытия (этапы развития и изучения механизмов действия) // Журн. АМН України. –2004. – Т. 10, № 4. – С. 808–824.

Залесский В. Н. Лазерная медицина на рубеже ХХ–ХХІ веков: Монография. – К.: Випол, 2010. – 896 с.

Павлова Е. С., Гончарук С. Ф., Насибуллин Б. А. и др. Изучение механизма иммуномодулирующего влияния арсенид-галлиевого лазера на область проекции селезенки в эксперименте // Мед. реабилитация, курортология, физиотерапия. – 2002. – № 1. – C. 37–39.

Самосюк И. З., Лысенок В. П., Лобода М. В. Лазеротерапия и лазеропунктура в клинической и курортной практике. – К.: Здоровья, 1997. – 240 с.

Самосюк И. З., Самосюк Н. И., Федоров С. Н., Залесский В. Н. 50 лет лазерной медицины: горизонты лазеропунктуры – современной технологии рефлексотерапии: Монография. – К.: Випол, 2012. – 494 с.

Спирин А. С. Биосинтез белков, РНК – мир и происхождение жизни // Вестн. Рос. академии наук. – 2001. – № 4. – С. 320–328.

Aimbire F., Santos F. V., Albertini R. et al. Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-kappaB dependent mechanism // Int. Immunopharmacol. – 2008. – Vol. 8, N 4. – P. 603–605.

Al Ghamdi K. M., Kumar A., Moussa N. A. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells // Lasers Med. Sci. – 2012. – Vol. 27, N 1. – P. 237–249.

Bach D., Fuereder J., Karbiener M. et al. Comprehensive analysis of alterations in the miRNome in response to photodynamic treatment // J. Photochem. Photobiol. B. – 2013. – Vol. 120. – P. 74–81.

Brown S. B., Brown E. A., Walker I. The present and future role of photodynamic therapy in cancer treatment // Lancet Oncol. – 2004. – Vol. 5, N 8. – P. 497–508.

Bouvet-Gerbettaz S., Merigo E., Rocca J. P. et al. Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts // Lasers Surg. Med. – 2009. – Vol. 41, N 4. – P. 291–297.

Buravlev E. A., Zhidkova T. V., Vladimirov Y. A., Osipov A. N. Effects of laser and LED radiation on mitochondrial respiration in experimental endotoxic shock // Lasers Med. Sci. – 2013. – Vol. 28, N 3. – P. 785–790.

Buytaert E., Dewaele M., Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy // Biochim. Biophys. Acta. – 2007. – Vol. 1776, N 1. – P. 86–107.

Cheng A. M., Byrom M. W., Shelton J., Ford L. P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis // Nucleic Acids Res. – 2005. – Vol. 33, N 4. – P. 1290–1297.

Chung S. H., Mazur E. Surgical applications of femtosecond lasers // J. Biophotonics. – 2009. – Vol. 2, N 10. – P. 557–572.

Coombe A. R., Ho C. T., Darendeliler M. A. et al. The effects of low level laser irradiation on osteoblastic cells // Clin. Orthod. Res. – 2001. – Vol. 4, N 1. – P. 3–14.

Curtale G, Citarella F. Dynamic nature of noncoding RNA regulation of adaptive immune response // Int. J. Mol. Sci. – 2013. – Vol. 14, N 9. – P. 17347–17377.

Da Silva J. P., Da Silva M. A., Almeida A. P. et al. Laser therapy in the tissue repair process: a literature review // Photomed. Laser Surg. – 2010. – Vol. 28, N 1. – P. 17–21.

Da Silva A. P., Petri A. D., Crippa G. E. et al. Effect of low-level laser therapy after rapid maxillary expansion on proliferation and differentiation of osteoblastic cells // Lasers Med. Sci. – 2012. – Vol. 27, N 4. – P. 777–783.

Ferrario A., Von Tiehl K. F., Rucker N. et al. Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma // Cancer Res. – 2000. – Vol. 60, N 15. – P. 4066–4069.

Fukuda T. Y., Tanji M. M., Silva S. R. et al. Infrared low-level diode laser on inflammatory process modulation in mice: pro- and anti-inflammatory cytokines // Lasers Med. Sci. – 2013. – Vol. 28, N 5. – P. 1305–1313.

Fushimi T., Inui S., Nakajima T. et al. Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo // Wound Repair Regen. – 2012. – Vol. 20, N 2. – P. 226–235.

Giannakakis A., Sandaltzopoulos R., Greshock J. et al. MiR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer // Cancer Biol. Ther. – 2008. – Vol. 7, N 2. – P. 255–264.

Gu X., Nylander E., Coates P. J., Nylander K. Effect of narrow-band ultraviolet B phototherapy on p63 and microRNA (miR-21 and miR-125b) expression in psoriatic epidermis // Acta Derm. Venereol. – 2011. – Vol. 91, N 4. – P. 392–397.

Hirata S., Kitamura C., Fukushima H. et al. Low-level laser irradiation enhances BMP-induced osteoblast differentiation by stimulating the BMP/Smad signaling pathway // J. Cell Biochem.– 2010. – Vol. 111, N 6. – P. 1445–1452.

Hu W. P., Wang J. J., Yu C. L. et al. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria // J. Invest. Dermatol. – 2007. – Vol. 127, N 8. – P. 2048–2057.

Huang Y., Zhang J. L., Yu X. L. et al. Molecular functions of small regulatory noncoding RNA // Biochemistry. – 2013. – Vol. 78, N 3. – P. 221–230.

Hou J. F., Zhang H., Yuan X. et al. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation // Lasers Surg. Med. – 2008. – Vol. 40, N 10. – P. 726–733.

Ignatieva N., Zakharkina O., Andreeva I. et al. Effects of laser irradiation on collagen organization in chemically induced degenerative annulus fibrosus of lumbar intervertebral disc // Lasers Surg. Med. – 2008. – Vol. 40, N 6. – P. 422–432.

Kammerer R., Buchner A., Palluch P. et al. Induction of immune mediators in glioma and prostate cancer cells by non-lethal photodynamic therapy // PLoS One. – 2011. – Vol. 6, N 6. – P. e21834.

Karu T. I. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation // Photochem. Photobiol. – 2008. – Vol. 84, N 5. – P. 1091–1099.

Kushibiki T., Awazu K. Controlling osteogenesis and adipogenesis of mesenchymal stromal cells by regulating a circadian clock protein with laser irradiation // Int. J. Med. Sci. – 2008. – Vol. 5, N 6. – P. 319–326.

Kushibiki T., Hirasawa T., Okawa S., Ishihara M. Blue laser irradiation generates intracellular reactive oxygen species in various types of cells // Photomed .Laser Surg. – 2013. – Vol. 31, N 3. – P. 95–104.

Kushibiki T., Tajiri T., Ninomiya Y., Awazu K. Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation // J. Photochem. Photobiol. B. – 2010. – Vol. 98, N 3. – P. 211–215.

Kushibiki T. Photodynamic therapy induces microRNA-210 and -296 expression in HeLa cells / J. Biophotonics. – 2010. – Vol. 3, N 5/6. – P. 368–372.

Leonida A., Paiusco A., Rossi G. et al. Effects of low-level laser irradiation on proliferation and osteoblastic differentiation of human mesenchymal stem cells seeded on a three-dimensional biomatrix: in vitro pilot study // Lasers Med. Sci. – 2013. – Vol. 28, N 1. – P. 125–132.

Lev-Tov H., Brody N., Siegel D., Jagdeo J. Inhibition of fibroblast proliferation in vitro using lowlevel infrared light-emitting diodes // Dermatol. Surg. – 2013. – Vol. 39, N 3, pt. 1. – P. 422–425.

Lindgård A., Hultén L. M., Svensson L., Soussi B. Irradiation at 634 nm releases nitric oxide from human monocytes // Lasers Med. Sci. – 2007. – Vol. 22, N 1. – P. 30–36.

Lu J., Getz G., Miska E. A. et al. MicroRNA expression profiles classify human cancers // Nature. – 2005. – Vol. 435, N 7043. – P. 834–838.

Luo L., Sun Z., Zhang L. et al. Effects of low-level laser therapy on ROS homeostasis and expression of IGF-1 and TGF-β1 in skeletal muscle during the repair process // Lasers Med. Sci. – 2013. – Vol. 28, N 3. – P. 725–734.

Maiman T. H. Stimulated optical radiation of ruby // Nature. – 1960. – Vol. 187. – P. 493–494.

Magi B., Ettorre A., Liberatori S. et al. Selectivity of protein carbonylation in the apoptotic response to oxidative stress associated with photodynamic therapy: a cell biochemical and proteomic investigation // Cell Death Differ. – 2004. – Vol. 11, N 8. – P. 842–852.

Mester E., Szende B., Gärtner P. The effect of laser beams on the growth of hair in mice / Radiobiol. Radiother. – 1968. – Vol. 9, N 5. – P. 621–626.

Mester E., Spiry T., Szende B., Tota J. G. Effect of laser rays on wound healing // Am. J. Surg. – 1971. – Vol. 122, N 4 – P. 532–535.

Moriyama Y., Nguyen J., Akens M. et al. In vivo effects of low level laser therapy on inducible nitric oxide synthase // Lasers Surg. Med. – 2009. – Vol. 41, N 3. – P. 227–231.

Nishioka M. A., Pinfildi C. E., Sheliga T. R. et al. LED (660 nm) and laser (670 nm) use on skin flap viability: angiogenesis and mast cells on transition line // Lasers Med. Sci. – 2012. – Vol. 27, N 5. – P. 1045–1050.

Nowak-Stepniowska A., Pergo P., Padzik-Graczyk A. Photodynamic method of cancer diagnosis and therapy--mechanisms and applications // Postepy Biochem. – 2013. – Vol. 59, N 1. – P. 53–63.

Oliveira R. G., Ferreira A. P., Côrtes A. J. et al. Low-level laser reduces the production of TNF-α, IFN-γ, and IL-10 induced by OVA // Lasers Med. Sci. – 2013. – Vol. 28, N 6. – P. 1519–1525.

Pinheiro A. L., Soares L. G., Cangussú M. C. et al. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins and guided bone regeneration: a Raman spectroscopic study // Lasers Med. Sci. – 2012. – Vol. 27, N 5. – P. 903–916.

Safavi S. M., Kazemi B., Esmaeili M. et al. Effects of low-level He-Ne laser irradiation on the gene expression of IL-1beta, TNF-alpha, IFN-gamma, TGF-beta, bFGF, and PDGF in rat’s gingival // Lasers Med. Sci. – 2008. – Vol. 23, N 3. – P. 331–335.

Sato M., Kubota N., Inada E. et al. Hela cells consist of two cell types, as evidenced by cytochemical staining for alkaline phosphatase activity: a possible model for cancer stem cell study [Electronic resource]. – Way of access: URL: http://www.ibimapublishing.com/journals/ASC/asc.html. – Title from the screen.

Saygun I., Karacay S., Serdar M. et al. Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts // Lasers Med. Sci. – 2008. – Vol. 23, N 2. – P. 211–215.

Silveira L. B., Prates R. A., Novelli M. D. et al. Investigation of mast cells in human gingiva following low-intensity laser irradiation // Photomed. Laser Surg. – 2008. – Vol. 26, N 4. – P. 315–321.

Singh M. Dysregulated A to I RNA editing and non-coding RNAs in neurodegeneration // Front Genet. – 2013. – Vol. 3. – P. 326.

Simunović-Soskić M., Pezelj-Ribarić S., Brumini G. et al. Salivary levels of TNF-alpha and IL-6 in patients with denture stomatitis before and after laser phototherapy // Photomed. Laser Surg. – 2010. – Vol. 28, N 2. – P. 189–193.

Soleimani M., Abbasnia E., Fathi M. et al. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts an in vitro study // Lasers Med. Sci. – 20012. – Vol. 27, N 2. – P. 423–430.

Song S., Zhou F., Chen W. R. Low-level laser therapy regulates microglial function through Srcmediated signaling pathways: implications for neurodegenerative diseases // J. Neuroinflammation. – 2012. – Vol. 9. – P. 219.

Tafur J., Van Wijk E. P., Van Wijk R., Mills P. J. Biophoton detection and low-intensity light therapy: a potential clinical partnership // Photomed. Laser Surg. – 2010. – Vol. 28, N 1. – P. 23–30.

Tili E., Michaille J. J., Croce C. M. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer // Immunol. Rev. – 2013. – Vol. 253, N 1. – P. 167–184.

Tomé M., López-Romero P., Albo C. et al. MiR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells // Cell Death Differ. – 2011. – Vol. 18, N 6. –P. 985–995.

Verma S., Watt G. M., Mai Z., Hasan T. Strategies for enhanced photodynamic therapy effects // Photochem. Photobiol. – 2007. – Vol. 83, N 5. – P. 996–1005.

Vuylsteke M. E., Mordon S. R. Endovenous laser ablation: a review of mechanisms of action // Ann. Vasc. Surg. – 2012. – Vol. 26, N 3. – P. 424–433.

Wang J., Huang W., Wu Y. et al. MicroRNA-193 pro-proliferation effects for bone mesenchymal stem cells after low-level laser irradiation treatment through inhibitor of growth family, member 5 // Stem Cells Dev. – 2012. – Vol. 21, N 13. – P. 2508–2519.

Wilson R. C., Doudna J. A. Molecular mechanisms of RNA interference // Annu. Rev. Biophys. – 2013. – Vol. 42. – P. 217–239.

Würdinger T., Tannous B. A., Saydam O. et al. MiR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells // Cancer Cell. – 2008. – Vol. 14, N 5. – P. 382–393.

Yang B. F., Lu Y. J., Wang Z. G. MicroRNAs and apoptosis: implications in the molecular therapy of human disease // Clin. Exp. Pharmacol. Physiol. – 2009. – Vol. 36, N 10. – P. 951–960.

Zalessky V. N. Use of laser acupuncture for cancer pain relief // Pain. – 1984. – Suppl. 2. – P.154–155.

Zalessky V. N., Gordienko V. I., Bobrov V. A. Antihypertensive activity of laser biostimulation therapy // J. Hypertens. – 1990. – Vol. 8, suppl. 3. – P. 314–315.

Zalessky V. N., Piskovatsky P. M. Solar red light iridopuncture // Photochemistry & Photobiology. – 1993. – Vol. 57, suppl.1. – P. 98–99.

Zalessky V. N. Natural Solar red (630-800 nm) light and He-Ne laser biostimulation phenomena: trigger mechanism // Photochemistry & Photobiology. – 1993. – Vol. 57, suppl. 1. – P. 99–100.

Zhang L., Xing D., Zhu D., Chen Q. Low-power laser irradiation inhibiting Abeta25-35-induced PC12 cell apoptosis via PKC activation // Cell Physiol. Biochem. – 2008. – Vol. 22, N 1/4. – P. 215–222.

Zhao Z., Wu F. Minimally-invasive thermal ablation of early-stage breast cancer: a systemic review // Eur. J. Surg. Oncol. – 2010. – Vol. 36, N 12. – P. 1149–1155.

Zungu I. L., Hawkins Evans D., Abrahamse H. Mitochondrial responses of normal and injured human skin fibroblasts following low level laser irradiation--an in vitro study // Photochem. Photobiol. – 2009. – Vol. 85, N 4. – P. 987–996.


Abstract views: 25
PDF Downloads: 28
Published
2016-06-03
How to Cite
Zalessky, V. N., & Samosuk, I. Z. (2016). Regulation of miRNA expression by low-level laser therapy and photodynamic therapy (to the 50th anniversary of the laser medicine). Likars’ka Sprava, (3-4), 146-155. https://doi.org/10.31640/LS-2016(3-4)26
Section
Laser medicine